Resolution of the Canonical Fiber Metrics for a Lefschetz Fibration

Xuwen Zhu

MIT

Joint work with Richard Melrose

< 同 > < 三 > < 三 >

Uniformization theorem

Every Riemann surface with genus > 1 admits a metric with constant scalar curvature -1.

What if the surface becomes singular?

Question

(a) Does there exist a constant scalar curvature metric on the singular surface?

(b) If yes, how does it evolve when approaching the singular geometry?

Uniformization theorem

Every Riemann surface with genus > 1 admits a metric with constant scalar curvature -1.

What if the surface becomes singular?

Question

(a) Does there exist a constant scalar curvature metric on the singular surface?

(b) If yes, how does it evolve when approaching the singular geometry?

Singular geometry

Take a nontrivial geodesic cycle in *M*, and let its length go to zero.

Figure: Degenerating surfaces with a geodesic cycle shrinking to a point

4 6 1 1 4

Singular geometry

Take a nontrivial geodesic cycle in *M*, and let its length go to zero. This process can be indexed by a complex parameter $t \in \mathbb{D}$.

Figure: Degenerating surfaces, indexed by a parameter t

4 **A** N A **B** N A **B** N

Local geometry: hyperbolic cylinder

Locally the geometry near the shrinking cycle is described by the normal crossing model:

$$(z,w) \in \mathbb{C}^2, \quad zw = t$$

Figure: Local geometry of zw = t, with coordinate patch z and w

Lefschetz fibration

This local behavior fits naturally with Lefschetz fibration.

Definition

For a compact connected almost-complex 4-manifold *M*, and a Riemann surface *Z*, a Lefschetz fibration is defined as $\psi: M^4 \to Z^2$

- has regular complex fibers except one point *p* ∈ *Z*;
- has surjective differential outside one point *q* ∈ ψ⁻¹(*p*);
- near *q* is reducible to the model $\{zw = t\}$.

Figure: Lefschetz fibration $\psi: M \rightarrow Z$

Lefschetz fibration is an interesting geometric object:

- Any algebraic surface is birational to a surface with Lefschetz fibration.
- A four-dimensional simply-connected compact symplectic manifold, possibly after stabilization by a finite number of blow-ups, admits a Lefschetz fibration over the sphere [Donaldson, 1998]
- The converse is also true: if the homology class of the regular fibre [F] is nonzero in H₂(X; ℝ), then X has to be symplectic. [Gompf, 1999]

Lefschetz fibration also appears to be the extremal behavior in Deligne–Mumford compactification.

- Space of universal curves fiber over the moduli space $\mathcal{C}_{g,p} \longrightarrow \mathcal{M}_{g,p}$.
- For g > 1, Deligne–Mumford compactification C_{g,p} adds exceptional divisors, appearance of pairs of nodal points on a Riemann surface of lower genus. [Deligne–Mumford, 1979]
- Metrics on the universal curves provide information on Weil–Petersson metric on moduli space: [Masur, 1976] [Masur–Wolf, 2002] [Mirzakhani, 2007] [Mazzeo–Swoboda, ongoing]

(日)

D–M compactification

Figure: Universal curves over D-M compactified moduli space

Xuwen Zhu (MIT)

Theorem[Melrose-Z, 2014]

There is a resolved space $M_{\text{met}} \longrightarrow M$ such that for the plumbing metric $g_{pl}^{(t)} \in \text{Met}(M_{\text{met}}^{(t)})$, there exists a polyhomogeneous function $f \in (\frac{1}{\log |t|})^2 \mathcal{C}^{\infty}_{\log}(M_{\text{met}})$ such that the fiber metric

$$g_{cc}^{(t)}=e^{2f}g_{
ho l}^{(t)}$$

satisfies

$$R(g_{cc}^{(t)}) = -1, \forall |t| \in [0, \frac{1}{2}).$$

(日)

Theorem[Obitsu-Wolpert, 2009]

Let ds_{cc}^2 be the hyperbolic metric on the degenerated family R_t with m vanishing cycles, Δ the associated Laplacian, and ds_{pl} the plumbing metric that comes from gluing $ds_{P_t}^2$ with the regular part, then the metric has the following expansion

$$egin{aligned} ds^2_{cc} &= ds^2_{pl} igg(1 - rac{\pi^2}{3} \sum_{j=1}^m (\log |t_j|)^{-2} (\Delta - 2)^{-1} (\Lambda(z_j) + \Lambda(w_j)) \ &+ Oigg(\sum (\log |t_j|)^{-4} igg) igg) \end{aligned}$$

where the function Λ is given by $\Lambda(z_j) = (s_z^4 \chi_{\psi^{-1} \mathbb{D}_{1/2}})_{s_z}, \quad s_z = \log |z_j|.$

イロト イポト イヨト イヨト

Plumbing metric

• Consider the local model:

$$P = \{ (z, w, t) \in \mathbb{C}^3; zw = t, |z| \le 1, |w| \le 1, |t| \le 1/2 \} \\ \longrightarrow \mathbb{D}_{\frac{1}{2}} = \{ t \in \mathbb{C}; |t| \le 1/2 \}.$$

Plumbing metric on each fiber

$$egin{aligned} g^{(t)}_{
hol} &= \left(rac{\pi \log |z|}{\log |t|} \csc rac{\pi \log |z|}{\log |t|}
ight)^2 g_0, \ g_0 &= \left(rac{|dz|}{|z|\log |z|}
ight)^2 \end{aligned}$$

•
$$g_{
ho l}^{(t)}
ightarrow g_0$$
 as $t
ightarrow 0$.

- Symmetric with the change of w = t/z.
- Fiber curvature = -1.

Step 1: resolving the complex structure

To make g_{pl} smooth at t = 0, we need to first blow up the intersection:

$$\begin{aligned} P_{\bar{\partial}} &:= [P; z = w = 0]. \\ P_{\bar{\partial}} &= \{(r_z, r_w); 0 \le r_z, r_w \le 1, \ r_z r_w \le \frac{1}{2}\} \times \mathbb{S}_z \times \mathbb{S}_w. \end{aligned}$$

Figure: Blow up of $\{z = w = 0\}$

We do a "logarithmic blow up" to the space obtained above:

$$[P; \{z = 0\}_{log} \cup \{w = 0\}_{log}].$$

This step introduces smooth functions $1/\log |z|$ and $1/\log |w|$:

$$s_z = rac{1}{\log rac{1}{r_z}}, \ s_w = rac{1}{\log rac{1}{r_w}}$$

4 D N 4 B N 4 B N 4 B N

Step 3

After change of variable, the metric becomes

$$g_{pl}^{(t)} = \frac{\pi^2 s_t^2}{\sin^2(\frac{\pi s_t}{s_w})} \left(\frac{ds_w^2}{s_w^4} + d\theta_w^2\right)$$

where

$$s_t = rac{s_z s_w}{s_z + s_w} = rac{s_w}{1 + rac{s_w}{s_z}}$$

is not a smooth function.

We blow up, radially, the corner formed by the intersection of the two logarithmic boundary faces

$$P_{\text{met}} = [[P; \{z = 0\}_{\log} \cup \{w = 0\}_{\log}]; \{s_z = s_w = 0\}].$$

Step 3

After change of variable, the metric becomes

$$g_{pl}^{(t)} = \frac{\pi^2 s_t^2}{\sin^2(\frac{\pi s_t}{s_w})} \left(\frac{ds_w^2}{s_w^4} + d\theta_w^2\right)$$

where

$$s_t = rac{s_z s_w}{s_z + s_w} = rac{s_w}{1 + rac{s_w}{s_z}}$$

is not a smooth function.

We blow up, radially, the corner formed by the intersection of the two logarithmic boundary faces

$$P_{\text{met}} = [[P; \{z = 0\}_{\log} \cup \{w = 0\}_{\log}]; \{s_z = s_w = 0\}].$$

Resolved space M_{met}

We consider the following glued space of $M_{met} = (M \setminus P) \cup P_{met}$:

Figure: Final resolved space M_{met}

Solving the curvature equation

• We consider the following fiber metric on the space of *M*_{met}:

$$g_{pl} = \chi_1 g_{pl}^{(t)} + \chi_2 g_{uni}$$

 $\chi_{\rm 1}$: cutoff for ${\it P}_{\rm met},\,g^{(t)}_{\it pl}$ being the local plumbing metric on the plumbing variety

 χ_2 : cutoff for $M \setminus P_{met}$, with g_{uni} being the metric on a regular fiber given by the classical uniformization theorem.

• The curvature of g_{pl} satisfies

$$R(g_{pl}) = -1 + e$$

with error *e* is: (a) compactly supported (b) near the singular face has $O(\rho_t^2)$ decay.

A D > A B > A B > A B >

Solving the curvature equation

We consider the following fiber metric on the space of M_{met}:

$$g_{pl} = \chi_1 g_{pl}^{(t)} + \chi_2 g_{uni}$$

 $\chi_{\rm 1}$: cutoff for ${\it P}_{\rm met},\,g_{\it pl}^{(t)}$ being the local plumbing metric on the plumbing variety

 χ_2 : cutoff for $M \setminus P_{met}$, with g_{uni} being the metric on a regular fiber given by the classical uniformization theorem.

• The curvature of g_{pl} satisfies

$$R(g_{pl}) = -1 + e$$

with error *e* is: (a) compactly supported (b) near the singular face has $O(\rho_t^2)$ decay.

(日)

Curvature equation for conformal factor: if $g = e^{2t}g_0$, then

$$R(g)e^{2f} = \Delta_{g_0}f + R(g_0),$$

which in our case is

$$\Delta_{g_{pl}}f+R(g_{pl})=-e^{2f}.$$

The linearization of this equation:

$$\Delta_{g_{pl}}f+R(g_{pl})=-1-2f.$$

A D N A B N A B N A B N

Curvature equation for conformal factor: if $g = e^{2t}g_0$, then

$$R(g)e^{2f}=\Delta_{g_0}f+R(g_0),$$

which in our case is

$$\Delta_{g_{pl}}f+R(g_{pl})=-e^{2f}.$$

The linearization of this equation:

$$\Delta_{g_{pl}}f+R(g_{pl})=-1-2f.$$

4 H N 4 H N 4 H N 4 H N

We solve the linearized equation

$$(\Delta+2)u=f\in O(\rho_t^2)$$

on the space M_{met} .

- Two boundary faces: face I is the regular Riemann surface and face II is the one introduced in the last step
- Indicial roots: $\{1, -2\}$ for face I, and $\{-1, 2\}$ for face II
- Invertibility of $\Delta + 2$ on both surfaces
- Appearance of extra log terms

A (B) + A (B) + A (B) +

Log-smoothness of a genuine solution

Solve iteratively to get a formal expansion for the curvature equation

$$\Delta_{g_{
hol}}f+R(g_{
hol})=-e^{2f}$$

where *f* has the following expansion

$$f \sim \sum_{k\geq 1}^{\infty} g_k$$

- g_k has a factor of ρ_t^{2k} ;
- Generally with logarithmics factors.

Then we use a perturbation argument to show the existence of a genuine solution.

4 **A** N A **B** N A **B** N

Application: Deligne–Mumford compactification

Conjecture

There is a (non-holomorphic) resolution given below

which, in the category of real manifolds with corners, resolves this fiber metric that we have a complete expansion.

(日)

Theorem [Fine, 2004]

If X is a compact connected complex surface admitting a holomorphic submersion onto a complex curve Σ with fibres of genus ≥ 2 , then, for all large *r*, the Kähler class $k_r = -c_1(V) - r * c_1(\Sigma)$ contains a constant scalar curvature Kähler metric.

- Key construction: an adiabatic limit with the constant scalar curvature metric on the fibres of *X* and a large multiple of a metric on the base.
- The linearized operator acting on Kähler potential: $\Delta^2 R\Delta$

Question

Generalize to complex surfaces with a Lefschetz fibration, can we find a local adiabatic model?

Thank you for your attention!

æ

イロト イロト イヨト イヨト

Xuwen Zhu (MIT)

(日)(個)(日)(E)(E)(E)(E)