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Constant curvature metrics on Riemann surfaces
Classical uniformization theorem: for a given Riemann surface,
there is a unique (smooth) constant curvature metric

A constant curvature metric with conical singularities is a smooth
metric with constant curvature, except near pj the metric is
asymptotic to a cone with angle 2πβj

(Gauss–Bonnet)

χ(M, ~β) :=

χ(M)

+
k∑

j=1

(βj − 1)

=
1

2π
KA

χ(M) = Euler characteristic , K = curvature , A = area

Near a cone point with angle 2πβ, in geodesic polar coordinates

g =


dr2 + β2r2dθ2 K = 0 (flat)
dr2 + β2 sin2 rdθ2 K = 1 (spherical)
dr2 + β2 sinh2 rdθ2 K = −1 (hyperbolic)

In conformal coordinates z = (βr)1/βeiθ, g = f (z)|z|2(β−1)|dz|2
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Some examples of constant curvature conical metrics

Translation
surfaces
(K = 0)

4π

4π

Branched covers
of constant
curvature
surfaces

(K = −1,0,1)

2πα

2πα

Spherical
footballs
(K = 1)

2πα
2πγ

4π

2π(α + γ)

“Heart”: footballs
glued along
geodesics

(K = 1)
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The study of constant curvature conical metrics is related to:
Magnetic vortices: solitons of gauged sigma-models on a
Riemann surface
Mean Field Equations: models of electro-magnetism
Toda system: multi-dimensional version
Higher dimensional analogue: Kähler–Einstein metrics with
conical singularities
Bridge between the (pointed) Riemann moduli spaces: cone angle
from 0 to 2π

This subject can be approached in many ways:
PDE: singular Liouville equations
Complex analysis: developing maps and Schwarzian derivatives
Synthetic geometry: cut-and-glue
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A singular uniformization problem

Consider the following “conical data”:
n distinct points p = (p1, . . . ,pn)

Angle data ~β = (β1, . . . , βn), βi ∈ R+ \ {1}
Conformal structure c given by the underlying Riemann surface

Question

Given conical data (p, ~β, c), does there exist a unique constant
curvature conical metric with this data?
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When uniformization holds

Theorem (Heins ’62, McOwen ’88, Troyanov ’91, Luo–Tian ’92)

For any compact Riemann surface (M, c) and conical data (p, ~β) with
χ(M, ~β) ≤ 0; or
χ(M, ~β) > 0, ~β ∈ T ⊂ (0,1)k where T is the Troyanov region

there is a unique constant curvature conical metric with this data.

Theorem (Mazzeo–Weiss ’15)

If ~β ∈ (0,1)k , then there is a well-defined (6γ − 6 + 3k)-dimensional
moduli space.
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Spherical metrics with large cone angles

The remaining case: χ(M, ~β) > 0, at least one of the angles
greater than 2π
Uniformization fails in this case
Existence: constraints on conical data (p, ~β, c)
Mondello–Panov ’16, Chen–Lin ’17, Chen–Kuo–Lin–Wang ’18. . .
Uniqueness: usually fails
Chen–Wang–Wu–Xu ’14, Eremenko ’17,
Bartolucci–De Marchis–Malchiodi ’11 . . .
Deformation: obstructions exist [Z ’19]
Literature: Troyanov ’91, Bartolucci & Tarantello ’02,
Bartolucci & Carlotto & De Marchis & Malchiodi ’11–’19,
Chen & Kuo & Lin & Wang ’02–’19, Umehara & Yamada ’00,
Eremenko ’00, Eremenko & Gabrielov & Tarasov ’01–’19,
Xu ’14–’19, Mondello & Panov ’16–’17, Dey ’17 . . . . . . . . . . . . . . . . . . .
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Outline of the main result
Our results provide new understanding of the local structure of the
moduli space where it is not smoothly parametrized:

Theorem (Mazzeo–Z ’19)

The local deformation with respect to (c, p, ~β) has rigidity precisely
when 2 ∈ Spec(∆Fr

g );
It can be “desingularized” by adding more coordinates via splitting
of cone points.

Understanding this problem through a nonlinear PDE:

{Constant curvature K conical metrics}xy{
Solutions to the Liouville equation

∆g0u − Ke2u + Kg0 = 0

}
Here g0 is either a smooth metric (then u has singularities); or a
conical metric with the given conical data (then u is bounded).
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Setup

From now on we study spherical metrics (K = 1)

We fix the Riemann surface (M, c) and do not vary cone angles

U (~β): the space of all cone metrics (not necessarily spherical)
with cone angles ~β ∈ Rn

p : U (~β)→ Mn the positions of the cone points

S(~β) ⊂ U (~β): the set of spherical cone metrics

In general p : S(~β)→ Mn is not a local diffeomorphism: we cannot
parametrize elements of S(~β) by cone point positions [Z ’19]

Is p(S(~β)) a submanifold with the tangent space prescribed by
linear constraints? We don’t know for the original question, but we
deal with a related one when we allow to split cone points
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Deformation and linear obstructions
Fix g0 ∈ S(~β). We study local deformations gt : (−ε, ε)→ S(~β)
and cone point positions pt = p(gt ).

We have gt = e2ut g0, where ut satisfies u0 = 0 and solves the
singular Liouville equation

∆g0ut − e2ut + 1 = 0,

Linearized equation: (∆g0 − 2)v = 0 where v := ∂tut |t=0

If v ∈ ker(∆Fr
g0
− 2) where ∆Fr

g0
is the Friedrichs Laplacian, then

∂tpt |t=0 = 0: obstruction to injectivity of p.

∂tpt |t=0 gives the singular terms of v (those not in the Friedrichs
domain). If ker(∆Fr

g0
− 2) 6= 0 then it might be impossible to find a

solution with given singular terms: obstruction to surjectivity of p.

We say ~A(= ∂tpt |t=0) satisfies linear constraints if there exists a
solution v to (∆g0 − 2)v = 0 with singular terms prescribed by ~A.
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Is 2 an eigenvalue of ∆Fr
g ?

When ~β ∈ (0,1)k : the only spherical metrics with eigenvalue 2 are
footballs (Bochner’s technique / integration by parts)

When at least one βi > 1: the argument would not work any more
Examples of metrics with 2 ∈ Spec(∆Fr

g ): footballs, “heart”,
branched covers of the standard sphere

Metrics with reducible monodromy all satisfy 2 ∈ Spec(∆Fr
g )

These eigenfunctions generate gauge transformations [Xu–Z ’19]

Xuwen Zhu Constant curvature conical metrics 12 / 24



Is 2 an eigenvalue of ∆Fr
g ?

When ~β ∈ (0,1)k : the only spherical metrics with eigenvalue 2 are
footballs (Bochner’s technique / integration by parts)

When at least one βi > 1: the argument would not work any more
Examples of metrics with 2 ∈ Spec(∆Fr

g ): footballs, “heart”,
branched covers of the standard sphere

Metrics with reducible monodromy all satisfy 2 ∈ Spec(∆Fr
g )

These eigenfunctions generate gauge transformations [Xu–Z ’19]

Xuwen Zhu Constant curvature conical metrics 12 / 24



Is 2 an eigenvalue of ∆Fr
g ?

When ~β ∈ (0,1)k : the only spherical metrics with eigenvalue 2 are
footballs (Bochner’s technique / integration by parts)

When at least one βi > 1: the argument would not work any more
Examples of metrics with 2 ∈ Spec(∆Fr

g ): footballs, “heart”,
branched covers of the standard sphere

Metrics with reducible monodromy all satisfy 2 ∈ Spec(∆Fr
g )

These eigenfunctions generate gauge transformations [Xu–Z ’19]

Xuwen Zhu Constant curvature conical metrics 12 / 24



Two examples where 2 ∈ Spec(∆Fr
g )

2πα

2πα

There is one eigenfunction ∆Fr
g φ = 2φ

Take coordinate z centered on the north pole, then
the complex gradient vector field of φ is given by
−z∂z , which corresponds to conformal dilations

2πα
2πγ

4π

2π(α + γ)

The eigenfunctions on two footballs glue to a good
eigenfunction ψ
The complex gradient vector field of ψ again
corresponds to conformal dilations
This generates a family of spherical metrics with the
same ~β

Rigidity: this family gives all spherical metrics with
such ~β [Z ’19]
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A schematic picture

Mn

p

κ : e2ug0 7! ∆g0u � e 2u + 1

U(~β)

S(~β) = κ�1 (0)

g0

p(g0)

0 2 C0;α(M)

When 2 /∈ Spec(∆Fr
g0

),
implicit function theorem applies to

get a neighborhood of p(g0)

"Mn
"

p

κ

U(~β)

S(~β) = κ�1 (0)

g0

p(g0)

0 2 C0;α(M)

EN

~A

When 2 ∈ Spec(∆Fr
g0

), in order to
get a surjective map, we need to
enlarge the parameter space to

include splitting

Xuwen Zhu Constant curvature conical metrics 14 / 24



A schematic picture

Mn

p

κ : e2ug0 7! ∆g0u � e 2u + 1

U(~β)

S(~β) = κ�1 (0)

g0

p(g0)

0 2 C0;α(M)

When 2 /∈ Spec(∆Fr
g0

),
implicit function theorem applies to

get a neighborhood of p(g0)

"Mn
"

p

κ

U(~β)

S(~β) = κ�1 (0)

g0

p(g0)

0 2 C0;α(M)

EN

~A

When 2 ∈ Spec(∆Fr
g0

), in order to
get a surjective map, we need to
enlarge the parameter space to

include splitting

Xuwen Zhu Constant curvature conical metrics 14 / 24



A trichotomy theorem

Theorem (Mazzeo–Z, ’19)

Let (M,g0) be a spherical conic metric. Let N =
∑k

j=1 max{[βj ],1}. Let
` be the multiplicity of the eigenspace of ∆Fr

g0
with eigenvalue 2. There

are three cases: ` = 0,1 ≤ ` < 2N, ` = 2N.

1 (Local freeness) If ` = 0, then g0 ∈ S(~β) has a smooth
neighborhood parametrized by cone positions.

2 (Partial rigidity) If 1 ≤ ` < 2N, then there exists a 2N − `
dimensional p-submanifold X ∈ EN that parametrizes the cone
position of nearby metrics.

3 (Complete rigidity) If ` = 2N, then there is no nearby spherical
cone metric obtained by moving or splitting the cone points of g0.
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Cone points collision

To set up the nonlinear analysis, one needs to understand the
splitting (or merging) of cone points
We developed an C∞ model that encodes information of such
behaviors for all constant curvature conical metrics (not only
spherical)
Scale back the distance between two cone points (“blow up”)
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When two points collide
Scale back the distance between two cone points (“blow up”)
Half sphere at the collision point, with two cone points over the
half sphere:

Flat metric on the half sphere, and curvature K metric on the
original surface
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Iterative structure

When there are several levels of distance: scale iteratively
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Iterative structure
“bubble over bubble” structure
Higher codimensional faces from deeper scaling
Flat conical metrics on all the new faces

C123

C12

p1

p2

p3

Iterative singular structures:
Albin & Leichtnam & Mazzeo & Piazza ’09-’19,
Degeratu–Mazzeo ’14, Kottke–Singer ’15-’18,
Albin–Gell-Redman ’17, Albin–Dimakis–Melrose ’19, . . . . . . . . .
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Resolution of the configuration space

This “bubbling” process can be expressed in terms of blow-up of
product Mk ×M → Mk (k = 2 in the picture)

E2

C2

π2

p1

p2

(p1; p2)

p2

p1

Figure: “Centered” projection of C2 → E2
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Results about fiber metrics

Theorem (Mazzeo–Z ’17)

For any* given ~β, the family of constant curvature metrics with conical
singularities is polyhomogeneous on this resolved space.

*The metric family can be hyperbolic / flat (with any cone angles),
or spherical (with angles less than 2π, except footballs)
Solving the curvature equation uniformly

∆g0u − Ke2u + Kg0 = 0

The bubbles with flat conical metrics represent the asymptotic
properties of merging cones
We then applied this machinery to understand the big cone angle
case [Mazzeo–Z ’19]
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Linear constraints given by eigenfunctions

The splitting creates extra dimensions, which fills up the cokernel
of the linearized operator ∆Fr

g − 2
The direction of admissible splitting is determined by the
expansion of the eigenfunctions
Recall N =

∑k
j=1 max{[βj ],1}. An eigenfunction gives a 2N-tuple ~b

The tangent of splitting directions are given by vectors ~A that are
orthogonal to all such ~b (linear constraints)
The bigger dimension of eigenspace, the more constraint on the
direction of splitting
How to get the splitting direction from ~A: “almost” factorizing
polynomial equations

Xuwen Zhu Constant curvature conical metrics 22 / 24



Linear constraints given by eigenfunctions

The splitting creates extra dimensions, which fills up the cokernel
of the linearized operator ∆Fr

g − 2
The direction of admissible splitting is determined by the
expansion of the eigenfunctions
Recall N =

∑k
j=1 max{[βj ],1}. An eigenfunction gives a 2N-tuple ~b

The tangent of splitting directions are given by vectors ~A that are
orthogonal to all such ~b (linear constraints)
The bigger dimension of eigenspace, the more constraint on the
direction of splitting
How to get the splitting direction from ~A: “almost” factorizing
polynomial equations

Xuwen Zhu Constant curvature conical metrics 22 / 24



Linear constraints given by eigenfunctions

The splitting creates extra dimensions, which fills up the cokernel
of the linearized operator ∆Fr

g − 2
The direction of admissible splitting is determined by the
expansion of the eigenfunctions
Recall N =

∑k
j=1 max{[βj ],1}. An eigenfunction gives a 2N-tuple ~b

The tangent of splitting directions are given by vectors ~A that are
orthogonal to all such ~b (linear constraints)
The bigger dimension of eigenspace, the more constraint on the
direction of splitting
How to get the splitting direction from ~A: “almost” factorizing
polynomial equations
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An example: open-heart surgery

We obtain a deformation rigidity for the “heart”
The cone point with angle 4π is split into two separate points
In the equal splitting case: 4π → (3π,3π)

The spectral data dictates which splitting is possible:

2πα
2πβ

3π 3π

2π(α + β)

Yes

2πα
2πγ

4π

2π(α + γ)

2πα

3π

3π

2π(α + β)

2πβ

No
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Thank you for your attention!
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