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Constant curvature metric with conical singularities

Consider a compact Riemann surface M, with the following data:
k distinct points p = (p1, . . . ,pk )

Angle data ~β = (β1, . . . , βk ) ∈ (0,∞)k

Curvature constant K ∈ {−1,0,1}
Area A
Conformal structure c given by M

A constant curvature metric with prescribed conical singularities is a
smooth metric with constant curvature, except near pj the metric is
asymptotic to a cone with angle 2πβj .

(Gauss–Bonnet) χ(M, ~β) := χ(M) +
k∑

j=1

(βj − 1) =
1

2π
KA
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Local structure near a cone point

Locally near a cone point with angle 2πβ, there are coordinates
(geodesic polar coordinates) such that the metric is given by

g =


dr2 + β2r2dθ2 K = 0;

dr2 + β2 sin2 rdθ2 K = 1;

dr2 + β2 sinh2 rdθ2 K = −1

In the flat case, relating to the conformal structure

r =
1
β
|z|β, then g = |z|2(β−1)(d |z|2 + |z|2dθ2) = |z|2(β−1)|dz|2
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Some examples of constant curvature conical metrics

Figure: Translation
surfaces

4π

4π

Figure: Ramified
covers of constant
curvature surfaces

β

β

Figure: Spherical
footballs
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Existence and Uniqueness

Theorem (88’ McOwen, 91’ Troyanov, 92’ Luo–Tian)

For any compact surface M and conical data (p, ~β) satisfying one of
the following constraints:

χ(M, ~β) ≤ 0; or

χ(M, ~β) > 0, ~β ∈ (0,1)k

I k = 2, β1 = β2; or
I k ≥ 3, βj + k − χ(M) >

∑
i 6=j βi ,∀j .

there is a unique constant curvature metric with the prescribed
singularities.
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The moduli space for ~β ∈ (0,1)k

Theorem (Mazzeo–Weiss, 2015)
The spaces of constant curvature conical metrics CMcc(M, p) are
Banach manifolds.
There is an embedded (6γ − 6 + 3k)-dimensional submanifold
S ⊂ CMcc(M, p) which is the quotient by the action of
diffeomorphism group, i.e. the moduli space.

Question
1 What happens when cone points collide?
2 Compactification of the moduli space?
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When two points collide

Scale back the distance between two cone points (“blow up”)
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When two points collide
Scale back the distance between two cone points (“blow up”)
Half sphere at the collision point, with two cone points over the
half sphere:

Flat metric on the half sphere, and curvature K metric on the
original surface
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Iterative structure

When there are several levels of distance: scale iteratively
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Iterative structure
“bubble over bubble” structure
Higher codimensional faces from deeper scaling
Flat conical metrics on all the new faces

C123

C12

p1

p2

p3

Figure: One of the singular fibers in C3, where two of the points collide
faster than the third one
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Resolution of the configuration space

This “bubbling” process can be expressed in terms of blow-up of
product Mk ×M → Mk

E2

C2

π2

p1

p2

(p1; p2)

p2

p1

Figure: “Centered” projection of C2 → E2
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When there are more cone points

ρ12

ρ123

Fiber direction

1 2

3

Figure: A schematic picture of resolved total space: cone points are marked
blue, they become “separated” on the new faces; the most singular fiber is
marked by red
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Results about fiber metrics on Ck

Theorem (Mazzeo–Z, 2017)

For any* given ~β, the family of constant curvature metrics with conic
singularities is polyhomogeneous on Ck .

*The metric family can be hyperbolic / flat (with any cone angles),
or spherical (with angles less than 2π, except footballs)
Start by constructing a model metric g0, then solve the curvature
equation uniformly

∆g0u − Ke2u + Kg0 = 0

When K = 0, the curvature equation is linear
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The flat case

Theorem (Flat case)

The fiber flat conical metrics with fixed cone angles ~β and varying cone
points p lift to be polyhomogeneous on Ck .

The conformal factor is the sum of Green’s functions
Prove regularity by direct computation
The metric on the front face is a rescaled conical metric with
scattering (Euclidean) boundary
Induction on the depth of the corner
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Proof sketch for nonflat case

1) Construct an approximate solution, which involves iteratively
solving equations on faces with increasing depth

∆g0uN − Ke2uN + Kg0 = O(ρN)

2) Implicit function theorem to obtain the actual solution

∆g0(uN + vN)− Ke2(uN+vN) + Kg0 = 0

3) Commutator argument to show the regularity of vN near the
boundary faces

4) Together with the arbitrarily high order expansion, we obtain
polyhomogeneity of u = uN + vN
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Consequences of the theorem

Theorem

For fixed angles ~β, the fiberwise hyperbolic (resp. spherical) conical
metrics are polyhomogeneous on Ck .

The leading term of the metric is given by the flat metric
When K = ±1, the difference from the flat metric is bounded by
O(ρε)

This matches the blow up limit
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Motivation: positive curvature with big cone angles

Literature: [Troyanov, 1991] [Umehara–Yamada, 2000]
[Eremenko, 2000] [Eremenko–Gabrielov–Tarasov, 2014]
[Eremenko–Gabrielov, 2015] [Bartolucci–De Marchis–Malchiodi,
2011] [Carlotto–Malchiodi, 2012] [Malchiodi, 2016]
[Mondello–Panov, 2016]: spherical conical metrics on S2 under
the angle “holonomy condition”

d`1(~β − ~1,Zk
odd ) ≥ 1

When the above equality holds: [Dey, 2017] [Kapovich, 2017]
[Eremenko, 2017]
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β1

β2

β3

0
1 2

1

Figure: The admissible region for angle (β1, β2, β3): interior of the tetrahedra,
extended by reflection symmetry
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Questions to answer

Goal: Find out the structure of the moduli space

The full solution space: for given admissible (~β, p, c), how many
solutions are there?
Deformation theory: is there a manifold structure?
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Invertibility of the linearized operator ∆g − 2K

The linearized operator for the nonlinear curvature equation is
given by ∆g − 2K
The Friedrichs extension of the Laplacian ∆g is self-adjoint and
has discrete spectrum
When K < 0, ∆g − 2K is invertible; K = 0, only kernel is the
constant
When K > 0 and ~β ∈ (0,1)k , the first nonzero eigenvalue of ∆g
satisfies λ1 ≥ 2K , and equality is only achieved by the footballs
This argument only works for all βi < 1
Eigenfunctions become too singular when cone angle increases,
so the Lichnerowicz type argument would not work
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Eigenvalue 2: obstruction of operator invertibility

Intuition: when angles increase, eigenvalues of the Laplacian
decrease
Example: two footballs glued together

β1

β1

β2

β2

4π

4π

Figure: A surface with six conical points, with eigenvalue 2

Expect stratum with eigenvalue 2 to appear in the interior, and
extend to infinity.
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Indicial roots
The indicial roots of the flat conical Laplacian r−2 ((r∂r )2 + β−2∂2

θ

)
For k -th mode, the indicial root given by

±k
β
, with kernel r±

k
β eikθ

When ∆ has eigenvalue 2, the kernel of ∆− 2 is prescribed by
those indicial roots locally. When β > 1, these roots between
(−1,0) are obstructions to surjectivity.
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Figure: Indicial roots for different β
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Geometric realization of the indicial roots

We discover that one key step to make it unobstructed is the following:

Proposition (Mazzeo–Z, in progress)
The linear space generated by the splitting of cone angles are

spanned by {r−
ki
β ,1 ≤ ki < β}.

Proof by computing the Jacobi field generated by the geometric
motion
The linearized operator is surjective after adding those parameters
It provides additional coordinates for the moduli space
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Thank you for your attention!
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