The compactified configuration space and regularity for conical metrics

Xuwen Zhu (Stanford University)

Joint with Rafe Mazzeo

Outline

(1) Constant curvature conical metrics
(2) Compactification of configuration family
(3) Regularity of fibre metrics
(4) Motivation and further application

Constant curvature metric with conical singularities

Consider a compact Riemann surface M, with the following data:

- k distinct points $\mathfrak{p}=\left(p_{1}, \ldots, p_{k}\right)$
- Angle data $\vec{\beta}=\left(\beta_{1}, \ldots, \beta_{k}\right) \in(0, \infty)^{k}$
- Curvature constant $K \in\{-1,0,1\}$
- Area A
- Conformal structure \mathfrak{c} given by M

A constant curvature metric with prescribed conical singularities is a smooth metric with constant curvature, except near p_{j} the metric is asymptotic to a cone with angle $2 \pi \beta_{j}$.
(Gauss-Bonnet) $\quad \chi(M, \vec{\beta}):=\chi(M)+\sum_{j=1}^{k}\left(\beta_{j}-1\right)=\frac{1}{2 \pi} K A$

Local structure near a cone point

Locally near a cone point with angle $2 \pi \beta$, there are coordinates (geodesic polar coordinates) such that the metric is given by

$$
g= \begin{cases}d r^{2}+\beta^{2} r^{2} d \theta^{2} & K=0 \\ d r^{2}+\beta^{2} \sin ^{2} r d \theta^{2} & K=1 \\ d r^{2}+\beta^{2} \sinh ^{2} r d \theta^{2} & K=-1\end{cases}
$$

In the flat case, relating to the conformal structure

$$
r=\frac{1}{\beta}|z|^{\beta}, \text { then } g=|z|^{2(\beta-1)}\left(d|z|^{2}+|z|^{2} d \theta^{2}\right)=|z|^{2(\beta-1)}|d z|^{2}
$$

Some examples of constant curvature conical metrics

Figure: Translation surfaces

Figure: Ramified covers of constant curvature surfaces

Figure: Spherical footballs

Existence and Uniqueness

Theorem (88' McOwen, 91' Troyanov, 92' Luo-Tian)

For any compact surface M and conical data $(\mathfrak{p}, \vec{\beta})$ satisfying one of the following constraints:

- $\chi(M, \vec{\beta}) \leq 0$; or
- $\chi(M, \vec{\beta})>0, \vec{\beta} \in(0,1)^{k}$
$k=2, \beta_{1}=\beta_{2}$; or $k \geq 3, \beta_{j}+k-\chi(M)>\sum_{i \neq j} \beta_{i}, \forall j$.
there is a unique constant curvature metric with the prescribed singularities.

The moduli space for $\vec{\beta} \in(0,1)^{k}$

Theorem (Mazzeo-Weiss, 2015)

- The spaces of constant curvature conical metrics $\mathcal{C} \mathcal{M}_{c c}(M, \mathfrak{p})$ are Banach manifolds.
- There is an embedded $(6 \gamma-6+3 k)$-dimensional submanifold $S \subset \mathcal{C} \mathcal{M}_{c c}(M, \mathfrak{p})$ which is the quotient by the action of diffeomorphism group, i.e. the moduli space.

Question

(1) What happens when cone points collide?
(2) Compactification of the moduli space?

When two points collide

- Scale back the distance between two cone points ("blow up")

When two points collide

- Scale back the distance between two cone points ("blow up")
- Half sphere at the collision point, with two cone points over the half sphere:

- Flat metric on the half sphere, and curvature K metric on the original surface

Iterative structure

- When there are several levels of distance: scale iteratively

Iterative structure

- "bubble over bubble" structure
- Higher codimensional faces from deeper scaling
- Flat conical metrics on all the new faces

Figure: One of the singular fibers in \mathcal{C}_{3}, where two of the points collide faster than the third one

Resolution of the configuration space

This "bubbling" process can be expressed in terms of blow-up of product $M^{k} \times M \rightarrow M^{k}$

Figure: "Centered" projection of $\mathcal{C}_{2} \rightarrow \mathcal{E}_{2}$

When there are more cone points

Figure: A schematic picture of resolved total space: cone points are marked blue, they become "separated" on the new faces; the most singular fiber is marked by red

Results about fiber metrics on \mathcal{C}_{k}

Theorem (Mazzeo-Z, 2017)

For any* given $\vec{\beta}$, the family of constant curvature metrics with conic singularities is polyhomogeneous on \mathcal{C}_{k}.

- *The metric family can be hyperbolic / flat (with any cone angles), or spherical (with angles less than 2π, except footballs)
- Start by constructing a model metric g_{0}, then solve the curvature equation uniformly

$$
\Delta_{g_{0}} u-K e^{2 u}+K_{g_{0}}=0
$$

- When $K=0$, the curvature equation is linear

The flat case

Theorem (Flat case)

The fiber flat conical metrics with fixed cone angles $\vec{\beta}$ and varying cone points \mathfrak{p} lift to be polyhomogeneous on \mathcal{C}_{k}.

- The conformal factor is the sum of Green's functions
- Prove regularity by direct computation
- The metric on the front face is a rescaled conical metric with scattering (Euclidean) boundary
- Induction on the depth of the corner

Proof sketch for nonflat case

1) Construct an approximate solution, which involves iteratively solving equations on faces with increasing depth

$$
\Delta_{g_{0}} u_{N}-K e^{2 U_{N}}+K_{g_{0}}=\mathcal{O}\left(\rho^{N}\right)
$$

2) Implicit function theorem to obtain the actual solution

$$
\Delta_{g_{0}}\left(u_{N}+v_{N}\right)-K e^{2\left(u_{N}+v_{N}\right)}+K_{g_{0}}=0
$$

3) Commutator argument to show the regularity of v_{N} near the boundary faces
4) Together with the arbitrarily high order expansion, we obtain polyhomogeneity of $u=u_{N}+v_{N}$

Consequences of the theorem

Theorem

For fixed angles $\vec{\beta}$, the fiberwise hyperbolic (resp. spherical) conical metrics are polyhomogeneous on \mathcal{C}_{k}.

- The leading term of the metric is given by the flat metric
- When $K= \pm 1$, the difference from the flat metric is bounded by $O\left(\rho^{\epsilon}\right)$
- This matches the blow up limit

Motivation: positive curvature with big cone angles

- Literature: [Troyanov, 1991] [Umehara-Yamada, 2000] [Eremenko, 2000] [Eremenko-Gabrielov-Tarasov, 2014] [Eremenko-Gabrielov, 2015] [Bartolucci-De Marchis-Malchiodi, 2011] [Carlotto-Malchiodi, 2012] [Malchiodi, 2016]
- [Mondello-Panov, 2016]: spherical conical metrics on \mathbb{S}^{2} under the angle "holonomy condition"

$$
d_{\ell^{1}}\left(\vec{\beta}-\overrightarrow{1}, \mathbb{Z}_{o d d}^{k}\right) \geq 1
$$

- When the above equality holds: [Dey, 2017] [Kapovich, 2017] [Eremenko, 2017]

Figure: The admissible region for angle ($\beta_{1}, \beta_{2}, \beta_{3}$): interior of the tetrahedra, extended by reflection symmetry

Questions to answer

Goal: Find out the structure of the moduli space

- The full solution space: for given admissible ($\vec{\beta}, \mathfrak{p}, \mathfrak{c}$), how many solutions are there?
- Deformation theory: is there a manifold structure?

Invertibility of the linearized operator $\Delta_{g}-2 K$

- The linearized operator for the nonlinear curvature equation is given by $\Delta_{g}-2 K$
- The Friedrichs extension of the Laplacian Δ_{g} is self-adjoint and has discrete spectrum
- When $K<0, \Delta_{g}-2 K$ is invertible; $K=0$, only kernel is the constant
- When $K>0$ and $\vec{\beta} \in(0,1)^{k}$, the first nonzero eigenvalue of Δ_{g} satisfies $\lambda_{1} \geq 2 K$, and equality is only achieved by the footballs
- This argument only works for all $\beta_{i}<1$
- Eigenfunctions become too singular when cone angle increases, so the Lichnerowicz type argument would not work

Eigenvalue 2: obstruction of operator invertibility

- Intuition: when angles increase, eigenvalues of the Laplacian decrease
- Example: two footballs glued together

Figure: A surface with six conical points, with eigenvalue 2

- Expect stratum with eigenvalue 2 to appear in the interior, and extend to infinity.

Indicial roots

- The indicial roots of the flat conical Laplacian $r^{-2}\left(\left(r \partial_{r}\right)^{2}+\beta^{-2} \partial_{\theta}^{2}\right)$
- For k-th mode, the indicial root given by

$$
\pm \frac{k}{\beta}, \text { with kernel } r^{ \pm \frac{k}{\beta}} e^{i k \theta}
$$

- When Δ has eigenvalue 2 , the kernel of $\Delta-2$ is prescribed by those indicial roots locally. When $\beta>1$, these roots between $(-1,0)$ are obstructions to surjectivity.

Figure: Indicial roots for different β

Geometric realization of the indicial roots

We discover that one key step to make it unobstructed is the following:

Proposition (Mazzeo-Z, in progress)

The linear space generated by the splitting of cone angles are spanned by $\left\{r^{-\frac{k_{i}}{\beta}}, 1 \leq k_{i}<\beta\right\}$.

- Proof by computing the Jacobi field generated by the geometric motion
- The linearized operator is surjective after adding those parameters
- It provides additional coordinates for the moduli space

Thank you for your attention!

