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Moduli spaceMg,n and universal curve Cg,n

Moduli spaceMg of genus g Riemann surface, g ≥ 2
Complex structure↔ metric structure
Mg,n moduli space of punctured Riemann surfaces with genus g
and n ordered distinct marked points
Stable curve: 2g − 2 + n > 0
Universal curve Cg,n fibers overMg,n

Cg,n is identified withMg,n+1

Each fiber of Cg,n carries a finite area hyperbolic metric
The hyperbolic metric varies smoothly over the fibers
Weil-Petersson metric defined using the hyperbolic metric
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Deligne–Mumford compactification ofMg,n

The spaceMg,n is not compact.
Deligne–Mumford compactificationMg,n corresponds to adding
nodal crossing divisors
Singular fibrationMg,n+1 →Mg,n

Questions
How does the Weil–Petersson metric behave near the divisors on
Mg,n?
How does the canonical hyperbolic metric behave under nodal
degeneration?

Xuwen Zhu Hyperbolic and moduli degeneration 3 / 1



Deligne–Mumford compactification ofMg,n

The spaceMg,n is not compact.
Deligne–Mumford compactificationMg,n corresponds to adding
nodal crossing divisors
Singular fibrationMg,n+1 →Mg,n

Questions
How does the Weil–Petersson metric behave near the divisors on
Mg,n?
How does the canonical hyperbolic metric behave under nodal
degeneration?

Xuwen Zhu Hyperbolic and moduli degeneration 3 / 1



Degeneration I: pinching geodesics

In the compactification, nodal curves are added corresponding to
pinching geodesics.

Figure: Degenerating surfaces with a geodesic cycle shrinking to a point
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Nodal crossing divisors

The previous picture might be misleading: the singular surface has a
transversal crossing

t=0

Figure: Transversal crossing of universal curve

Locally the behavior is given by the plumbing variety

Definition
A plumbing variety is given by the following singular fibration

ψ : C2 3 (z,w) −→ t = zw ∈ C.
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Divisors inMg

The “boundary”Mg \Mg is a union of normally intersecting,
self-intersecting divisors
Pinching one geodesic gives a pair of nodal points
If the fiber has k pairs of nodal points, it lies on the intersection of
k local divisors, i.e. locally a k-fold intersection ofMg−1,2

The arithmetic genus G = 2g + n stays the same
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Degeneration II: pointed moduli spaceMg,n

Another degeneracy: marked points may collide
Example ofM0,4 of P1 with 4 points: {0,1,∞, t} vs {0,1/t ,∞,1}
Deligne-Mumford compactification separates the “colliding” points
by adding nodal spheres
A divisor inMg,n is represented by sequence of marked surfaces
(with possible loops) connected by nodal crossings
Singular fibration ofMg,n+1 overMg,n by dropping the last point
and possibly pinching unstable components
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Nodal curves

Picture source: http://www.partyballoonanimals.co.uk/wp-content/themes/alexandria-child/images/balloon-animal.png
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Multi-Lefschetz fibration

To characterize the fibration of universal curve over moduli space, we
define multi-Lefschetz fibrations

φ : Mn+1 → Z n is a regular fibration
except on finitely many points in M
Near each of the nodal points there
are holomorphic coordinates in which
the map is the product of a Lefschetz
map and a projection
Local chart is given by

φ : (z,w , η1, . . . ηn−1)

7→ (t = zw , η1, . . . ηn−1)

M3,5

Figure: Universal curve fibers
over the compactified moduli
spaceM3,5

Xuwen Zhu Hyperbolic and moduli degeneration 9 / 1



Cotangent bundle ofMg,n

The cotangent bundle ofMg,n is naturally identified with the bundle of
holomorphic quadratic differentials on the fibers ofMg,n+1

q : T 1,0Mg,n ' QMg,n.

Using this identification, the Weil-Petersson (co-)metric is defined by

GWP(ζ1, ζ2) =

∫
fib

ζ1ζ2

µH
, ζ1, ζ2 ∈ Qp, p ∈Mg,n

where µH is the area form of the fiber hyperbolic metric and the
integrand itself may be identified as a fiber area form.
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Previous results

Regarding the degenration of hyperbolic metrics, Obitsu and Wolpert
gave an expansion of the canonical metric up to 3rd order:

Theorem[Obitsu–Wolpert, 2009]

Let ds2
cc be the hyperbolic metric on the degenerated family Rt with m

vanishing cycles, ∆ the associated Laplacian, and dspl the plumbing
metric that comes from gluing ds2

Pt
with the regular part, then the

metric has the following expansion

ds2
cc = ds2

pl

(
1− π2

3

m∑
j=1

(log |tj |)−2(∆ + 2)−1(Λ(zj) + Λ(wj))

+O
(∑

(log |tj |)−4))
where the function Λ is given by Λ(zj) = (s4

zχψ−1D1/2
)sz , sz = log |zj |.
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Resolution of canonical fiber metrics

We improved the result of Obitsu–Wolpert, gave the complete
expansion and showed that under a suitable resolution:

M̂ //

ψ̂
��

M

ψ

��
Ẑ // Z

The real fibration map is a b-fibration
The fiber metric is conformal to a smooth metric on LT M̂ a
rescaling of the fiber tangent bundle
The conformal factor is log-smooth
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Plumbing metric

Our proof starts with the local model.
Consider the plumbing variety

P = {(z,w , t) ∈ C3; zw = t , |z| ≤ 1, |w | ≤ 1, |t | ≤ 1/2}
−→ D 1

2
= {t ∈ C; |t | ≤ 1/2}.

Plumbing metric on each fiber

g(t)
pl =

(
π log |z|
log |t | csc

π log |z|
log |t |

)2

g0,

g0 =

( |dz|
|z| log |z|

)2

g(t)
pl → g0 as t → 0

Symmetric with the change of w = t/z
Fiber curvature = −1
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Step 1: resolving the angular variable

To make gpl smooth at t = 0, we need to first blow up {z = 0} and
{w = 0} which are transversal:

P∂̄ := [P; {z = 0} ∪ {w = 0}].

P∂̄ = {(|z|, |w |); 0 ≤ |z|, |w | ≤ 1, |z||w | ≤ 1
2
} × Sz × Sw .

Blow up

Figure: Blow up of {z = 0} ∪ {w = 0}
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Step 2: Logarithmic blow up

We do a “logarithmic blow up” to the space obtained above:

[P; {z = 0}log ∪ {w = 0}log].

This step introduces smooth functions 1/ log |z| and 1/ log |w |:

ilog z =
1

log 1
|z|
, ilog w =

1
log 1

|w |
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Step 3

After change of variable, the metric becomes

g(t)
pl =

π2(ilog t)2

sin2 (π ilog t
ilog w

) ((d ilog w)2

(ilog w)4 + dθ2
w

)
where

ilog t =
ilog z ilog w

ilog z + ilog w
=

ilog w

1 + ilog w
ilog z

is not a smooth function.
We blow up, radially, the corner formed by the intersection of the two
logarithmic boundary faces

Pmr = [[P; {z = 0}log ∪ {w = 0}log]; {ilog z = ilog w = 0}].
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Resolved space M̂

We consider the following glued space of M̂ = (M \ P) ∪ Pmr:

II
I

I

Figure: Final resolved space M̂
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Result on Lefschetz fibration

Now we have a b-fibration:

M̂ //

ψ̂
��

M

ψ

��
Ẑ // Z

The fiber tangent bundle on M̂ after log rescaling is the bundle
which the metric lives.
Take a smooth hermitian metric on T M̂, we solve for the
conformal factor.

Theorem[Melrose–Z, 2015]
The fiber metrics of fixed constant curvature on a Lefschetz fibration
extend to a continuous Hermitian metric on LT M̂ which is related to a
smooth Hermitian metric on this complex line bundle by a log-smooth
conformal factor.
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Curvature equation on M̂

Curvature equation for conformal factor: if g = e2f g0, then

R(g)e2f = ∆g0 f + R(g0),

which in our case is

∆gpl f + R(gpl) = −e2f .

The linearization of this equation:

∆gpl f + R(gpl) = −1− 2f .
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Solvability of ∆ + 2 on M̂

We solve the linearized equation

(∆ + 2)u = f ∈ O
(

(ilog t)2
)

on the space M̂.
Two boundary faces: face I is the regular Riemann surface and
face II is the one introduced in the last step
Indicial roots: {1,−2} for face I, and {−1,2} for face II
Invertibility of ∆ + 2 on suitable weighted Sobolev spaces
Appearance of extra log terms
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Log-smoothness of a genuine solution

Solve iteratively to get a formal expansion for the curvature equation

∆gpl f + R(gpl) = −e2f

where f has the following expansion

f ∼
∞∑

k≥2

gk

gk has a factor of (ilog t)k ;
Generally with logarithmic factors.

Then we use a perturbation argument to show the existence of a
genuine solution.
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Multiple shrinking curves

Now we generalize the Lefschetz fibration to multi-Lefschetz fibration.
Cusp metric locally near the nodes
Blow up at every node to get front face II1, ..., IIn

II1

II2

Figure: Universal curves undergoing degeneration of two geodesics
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Iteration for solving the curvature equation

II1

II2

Figure: Universal curves undergoing degeneration of two geodesics

Start with curves with cusps
Solve the linear equation (∆ + 2)f = O

(
(ilog t1 ilog t2 . . . ilog tn)2)

Log terms appear in linear growth
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Quadratic holomorphic differential: log-cotangent
bundle

The cotangent space ofMg at a regular point consists of
holomorphic quadratic differentials
On the divisor, it contains meromorphic ones with poles at most
degree two
Identified with smooth sections of the log cotangent bundle

This gives us a way to find the complete expansion of Weil–Petersson
metric.
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Log geometry

There is a well-defined ‘logarithmic’ complex tangent LT (1,0)M and
cotangent bundle LΛ(1,0)M
The spaces of locally holomorphic sections of LT (1,0)M are the
holomorphic vector fields which are tangent to all the local
divisors.
In admissible local coordinates LT (1,0)M is locally spanned by the
holomorphic vector fields t∂t and ∂zk .

The complex dual of this bundle, LΛ(1,0)M, is locally spanned in
these coordinates by the dt/t and dzk .

Definition
Logarithmic cotangent bundle LΛ(1,0)Mg,n is defined to be the sheaf of
differentials which are logarithmic across the exceptional divisors.
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Log cotangent bundle

We show that LΛ(1,0)Mg,n is naturally isomorphic to an
appropriate bundle of holomorphic quadratic differentials on the
fibres (including the singular ones above the divisors) ofMg,n+1.
This extends the proof of Robbin and Salamon.
Dimension counting: the dimension of moduli spaceMg,n is
3g − 3 + n.
Dimension of cotangent space approaching one component of
divisorMg−1,n+2: 3(g − 1)− 3 + (n + 2) + 1 = 3g − 3 + n, where
the extra 1 comes from the residual on the nodal points
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Main theorem about WP metric onMg

A resolution of the complex compactification is given by

M̂g,n+1
β //

φ̂
��

Mg,n+1

φ
��

M̂g,n
β

//Mg,n

Lifting the log cotangent bundle to this resolution, we use the push
forward theorem to show that the Weil-Petersson metric is log-smooth
on LΛ(1,0)M̂g,n+1.

GWP(ζ1, ζ2) =

∫
fib

ζ1ζ2

µH
, ζ1, ζ2 ∈ Qp(LΛ1,0M̂g,n+1), p ∈ M̂g,n
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Application I: Expansion of shortest geodesics

Corollary
The length of the shortest geodesic under degeneration is a
polyhomogeneous function of ilog |t |.

In the plumbing model, the shortest geodesic is given by the circle
|z0| =

√
|t |

lpl(t) = 2π2/ log |t |
Rotational symmetry of the actual hyperbolic metric (up to infinite
order)
The minimizing curve still occurs in the circle |z0| =

√
|t |

lhp(t) = ef (|z0|,t)lpl(t) + O(t∞)
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Application II: Takhatajan–Zograf metric

For a punctured Riemann surface, the first Chern class on the
degree k line bundle is related to the WP metric by

c1(∂̄k ) =
6k2 − 6k + 1

12π2 ω(gWP)− 1
9
ω(gTZ )

Takhatajan–Zograf metric is given by

(q1,q2)TZ =

∫
fib

∑
i

E−1
i q1q̄2

µH

where Ei is the Eisenstein series at the i-th puncture
We obtain the expansion of TZ metric and its degenerating
behavior.
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Thank you for your attention!
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