Nodal degeneration of hyperbolic metrics and application to the Weil-Petersson metric on $\mathcal{M}_{g, n}$

Xuwen Zhu

Joint work with Richard Melrose

Moduli space $\mathcal{M}_{g, n}$ and universal curve $\mathcal{C}_{g, n}$

- Moduli space \mathcal{M}_{g} of genus g Riemann surface, $g \geq 2$
- Complex structure \leftrightarrow metric structure
- $\mathcal{M}_{g, n}$ moduli space of punctured Riemann surfaces with genus g and n ordered distinct marked points
- Stable curve: $2 g-2+n>0$
- Universal curve $\mathcal{C}_{g, n}$ fibers over $\mathcal{M}_{g, n}$
- $\mathcal{C}_{g, n}$ is identified with $\mathcal{M}_{g, n+1}$
- Each fiber of $\mathcal{C}_{g, n}$ carries a finite area hyperbolic metric
- The hyperbolic metric varies smoothly over the fibers
- Weil-Petersson metric defined using the hyperbolic metric

Moduli space $\mathcal{M}_{g, n}$ and universal curve $\mathcal{C}_{g, n}$

- Moduli space \mathcal{M}_{g} of genus g Riemann surface, $g \geq 2$
- Complex structure \leftrightarrow metric structure
- $\mathcal{M}_{g, n}$ moduli space of punctured Riemann surfaces with genus g and n ordered distinct marked points
- Stable curve: $2 g-2+n>0$
- Universal curve $\mathcal{C}_{g, n}$ fibers over $\mathcal{M}_{g, n}$
- $\mathcal{C}_{g, n}$ is identified with $\mathcal{M}_{g, n+1}$
- Each fiber of $\mathcal{C}_{g, n}$ carries a finite area hyperbolic metric
- The hyperbolic metric varies smoothly over the fibers
- Weil-Petersson metric defined using the hyperbolic metric

Deligne-Mumford compactification of $\mathcal{M}_{g, n}$

- The space $\mathcal{M}_{g, n}$ is not compact.
- Deligne-Mumford compactification $\overline{\mathcal{M}_{g, n}}$ corresponds to adding nodal crossing divisors
- Singular fibration $\overline{\mathcal{M}_{g, n+1}} \rightarrow \overline{\mathcal{M}_{g, n}}$

```
Questions
- How does the Weil-Petersson metric behave near the divisors on
- How does the canonical hyperbolic metric behave under nodal degeneration?
```


Deligne-Mumford compactification of $\mathcal{M}_{g, n}$

- The space $\mathcal{M}_{g, n}$ is not compact.
- Deligne-Mumford compactification $\overline{\mathcal{M}_{g, n}}$ corresponds to adding nodal crossing divisors
- Singular fibration $\overline{\mathcal{M}_{g, n+1}} \rightarrow \overline{\mathcal{M}_{g, n}}$

Questions

- How does the Weil-Petersson metric behave near the divisors on $\overline{\mathcal{M}_{g, n}}$?
- How does the canonical hyperbolic metric behave under nodal degeneration?

Degeneration I: pinching geodesics

In the compactification, nodal curves are added corresponding to pinching geodesics.

Figure: Degenerating surfaces with a geodesic cycle shrinking to a point

Nodal crossing divisors

The previous picture might be misleading: the singular surface has a transversal crossing

Figure: Transversal crossing of universal curve

Locally the behavior is given by the plumbing variety

Definition

A plumbing variety is given by the following singular fibration

Nodal crossing divisors

The previous picture might be misleading: the singular surface has a transversal crossing

Figure: Transversal crossing of universal curve

Locally the behavior is given by the plumbing variety

Definition

A plumbing variety is given by the following singular fibration

$$
\psi: \mathbb{C}^{2} \ni(z, w) \longrightarrow t=z w \in \mathbb{C} .
$$

Divisors in $\overline{\mathcal{M}_{g}}$

- The "boundary" $\overline{\mathcal{M}}_{g} \backslash \mathcal{M}_{g}$ is a union of normally intersecting, self-intersecting divisors
- Pinching one geodesic gives a pair of nodal points
- If the fiber has k pairs of nodal points, it lies on the intersection of k local divisors, i.e. locally a k-fold intersection of $\mathcal{M}_{g-1,2}$
- The arithmetic genus $\mathcal{G}=2 g+n$ stays the same

Degeneration II: pointed moduli space $\mathcal{M}_{g, n}$

- Another degeneracy: marked points may collide
- Example of $\mathcal{M}_{0,4}$ of \mathbb{P}^{1} with 4 points: $\{0,1, \infty, t\}$ vs $\{0,1 / t, \infty, 1\}$
- Deligne-Mumford compactification separates the "colliding" points by adding nodal spheres
- A divisor in $\overline{\mathcal{M}}_{\text {a.n }}$ is represented by sequence of marked surfaces (with possible loops) connected by nodal crossings
- Singular fibration of $\overline{\mathcal{M}}_{g, n+1}$ over $\overline{\mathcal{M}}_{g, n}$ by dropping the last point and possibly pinching unstable components

Degeneration II: pointed moduli space $\mathcal{M}_{g, n}$

- Another degeneracy: marked points may collide
- Example of $\mathcal{M}_{0,4}$ of \mathbb{P}^{1} with 4 points: $\{0,1, \infty, t\}$ vs $\{0,1 / t, \infty, 1\}$
- Deligne-Mumford compactification separates the "colliding" points by adding nodal spheres
- A divisor in $\overline{\mathcal{M}}_{g, n}$ is represented by sequence of marked surfaces (with possible loops) connected by nodal crossings
- Singular fibration of $\overline{\mathcal{M}}_{g, n+1}$ over $\overline{\mathcal{M}}_{g, n}$ by dropping the last point and possibly pinching unstable components

Nodal curves

Picture source: http://www.partyballoonanimals.co.uk/wp-content/themes/alexandria-child/images/balloon-animal.png

Multi-Lefschetz fibration

To characterize the fibration of universal curve over moduli space, we define multi-Lefschetz fibrations

- $\phi: M^{n+1} \rightarrow Z^{n}$ is a regular fibration except on finitely many points in M
- Near each of the nodal points there are holomorphic coordinates in which the map is the product of a Lefschetz map and a projection
- Local chart is given by

$$
\begin{aligned}
\phi:\left(z, w, \eta_{1}\right. & \left., \ldots \eta_{n-1}\right) \\
& \mapsto\left(t=z w, \eta_{1}, \ldots \eta_{n-1}\right)
\end{aligned}
$$

Figure: Universal curve fibers over the compactified moduli space $\overline{\mathcal{M}}_{3,5}$

Cotangent bundle of $\mathcal{M}_{g, n}$

The cotangent bundle of $\mathcal{M}_{g, n}$ is naturally identified with the bundle of holomorphic quadratic differentials on the fibers of $\mathcal{M}_{g, n+1}$

$$
q: T^{1,0} \mathcal{M}_{g, n} \simeq Q \mathcal{M}_{g, n}
$$

Using this identification, the Weil-Petersson (co-)metric is defined by

$$
G_{W P}\left(\zeta_{1}, \zeta_{2}\right)=\int_{\text {fib }} \frac{\zeta_{1} \overline{\zeta_{2}}}{\mu_{H}}, \zeta_{1}, \zeta_{2} \in Q_{p}, p \in \mathcal{M}_{g, n}
$$

where μ_{H} is the area form of the fiber hyperbolic metric and the integrand itself may be identified as a fiber area form.

Literature review

- Hyperbolic metrics on nodal crossing: [Wolpert, 1990] [Wolf, 1991] [Obitsu-Wolpert, 2009]
- Geometry of moduli space: [Bers, 1973, 1974] [Deligne-Mumford, 1979] [Robbin-Salamon, 2006]
- Weil-Petersson metric asymptotics: [Masur, 1976] [Wolpert, 2001, 2015] [Mazzeo-Swoboda, 2015]
- Problems related to Weil-Petersson metric: [Wolpert, 1982, 1986, 1990, 1992, 2008, 2012] [Takhatajan-Zograf, 1991] [Yamada, 2004] [Liu-Sun-Yau, 2004, 2005] [Obitsu-To-Weng, 2008] [Ji-Mazzeo-Müller-Vasy, 2014] [Gell-Redman-Swoboda, ongoing]

Previous results

Regarding the degenration of hyperbolic metrics, Obitsu and Wolpert gave an expansion of the canonical metric up to 3rd order:

Theorem[Obitsu-Wolpert, 2009]

Let $d s_{c c}^{2}$ be the hyperbolic metric on the degenerated family R_{t} with m vanishing cycles, Δ the associated Laplacian, and $d s_{p / l}$ the plumbing metric that comes from gluing $d s_{P_{t}}^{2}$ with the regular part, then the metric has the following expansion

$$
\begin{aligned}
d s_{c c}^{2}=d s_{p l}^{2}\left(1-\frac{\pi^{2}}{3} \sum_{j=1}^{m}\left(\log \left|t_{j}\right|\right)^{-2}(\Delta\right. & +2)^{-1}\left(\Lambda\left(z_{j}\right)+\Lambda\left(w_{j}\right)\right) \\
& \left.+O\left(\sum\left(\log \left|t_{j}\right|\right)^{-4}\right)\right)
\end{aligned}
$$

where the function Λ is given by $\Lambda\left(z_{j}\right)=\left(s_{z}^{4} \chi_{\psi^{-1} \mathbb{D}_{1 / 2}}\right)_{s_{z}}, \quad s_{z}=\log \left|z_{j}\right|$.

Resolution of canonical fiber metrics

We improved the result of Obitsu-Wolpert, gave the complete expansion and showed that under a suitable resolution:

- The real fibration map is a b-fibration
- The fiber metric is conformal to a smooth metric on ${ }^{L} T \widehat{M}$ a rescaling of the fiber tangent bundle
- The conformal factor is log-smooth

Plumbing metric

Our proof starts with the local model.

- Consider the plumbing variety

$$
\begin{aligned}
P=\left\{(z, w, t) \in \mathbb{C}^{3} ; z w=t,|z| \leq\right. & 1,|w| \leq 1,|t| \leq 1 / 2\} \\
& \longrightarrow \mathbb{D}_{\frac{1}{2}}=\{t \in \mathbb{C} ;|t| \leq 1 / 2\} .
\end{aligned}
$$

Plumbing metric on each fiber

$$
\begin{gathered}
g_{p l}^{(t)}=\left(\frac{\pi \log |z|}{\log |t|} \csc \frac{\pi \log |z|}{\log |t|}\right)^{2} g_{0} \\
g_{0}=\left(\frac{|d z|}{|z| \log |z|}\right)^{2}
\end{gathered}
$$

- $g_{p l}^{(t)} \rightarrow g_{0}$ as $t \rightarrow 0$
- Symmetric with the change of $w=t / z$
- Fiber curvature $=-1$

Step 1: resolving the angular variable

To make $g_{p l}$ smooth at $t=0$, we need to first blow up $\{z=0\}$ and $\{w=0\}$ which are transversal:

$$
\begin{gathered}
P_{\bar{\partial}}:=[P ;\{z=0\} \cup\{w=0\}] \\
P_{\bar{\partial}}=\left\{(|z|,|w|) ; 0 \leq|z|,|w| \leq 1,|z||w| \leq \frac{1}{2}\right\} \times \mathbb{S}_{z} \times \mathbb{S}_{w}
\end{gathered}
$$

Figure: Blow up of $\{z=0\} \cup\{w=0\}$

Step 2: Logarithmic blow up

We do a "logarithmic blow up" to the space obtained above:

$$
\left[P ;\{z=0\}_{\log } \cup\{w=0\}_{\log }\right]
$$

This step introduces smooth functions $1 / \log |z|$ and $1 / \log |w|$:

$$
\mathrm{ilog} z=\frac{1}{\log \frac{1}{|z|}}, \mathrm{ilog} w=\frac{1}{\log \frac{1}{|w|}}
$$

Step 3

After change of variable, the metric becomes

$$
g_{p l}^{(t)}=\frac{\pi^{2}(\mathrm{i} \log t)^{2}}{\sin ^{2}\left(\frac{\pi \mathrm{i} \log t}{\mathrm{i} \log w}\right)}\left(\frac{(d \mathrm{i} \log w)^{2}}{(\mathrm{i} \log w)^{4}}+d \theta_{w}^{2}\right)
$$

where

$$
\mathrm{ilog} t=\frac{\mathrm{i} \log z \mathrm{i} \log w}{\mathrm{i} \log z+\mathrm{i} \log w}=\frac{\mathrm{i} \log w}{1+\frac{\mathrm{i} \log w}{\mathrm{i} \log z}}
$$

is not a smooth function.
We blow up, radially, the corner formed by the intersection of the two logarithmic boundary faces

$$
P_{\mathrm{mr}}=[[P ;\{z=0\} \log \cup\{w=0\} \log] ;\{i \log z=\mathrm{ilog} w=0\}]
$$

Step 3

After change of variable, the metric becomes

$$
g_{p l}^{(t)}=\frac{\pi^{2}(\mathrm{i} \log t)^{2}}{\sin ^{2}\left(\frac{\pi \log t}{\mathrm{i} \log w}\right)}\left(\frac{(d \mathrm{i} \log w)^{2}}{(\mathrm{i} \log w)^{4}}+d \theta_{w}^{2}\right)
$$

where

$$
\mathrm{i} \log t=\frac{\mathrm{i} \log z \mathrm{i} \log w}{\mathrm{i} \log z+\mathrm{i} \log w}=\frac{\mathrm{i} \log w}{1+\frac{\mathrm{i} \log w}{\mathrm{i} \log z}}
$$

is not a smooth function.
We blow up, radially, the corner formed by the intersection of the two logarithmic boundary faces

$$
P_{\mathrm{mr}}=\left[\left[P ;\{z=0\}_{\log } \cup\{w=0\}_{\log }\right] ;\{\log z=\mathrm{ilog} w=0\}\right] .
$$

Resolved space \widehat{M}

We consider the following glued space of $\widehat{M}=(M \backslash P) \cup P_{\mathrm{mr}}$:

Figure: Final resolved space \widehat{M}

Result on Lefschetz fibration

Now we have a b-fibration:

- The fiber tangent bundle on \widehat{M} after log rescaling is the bundle which the metric lives.
- Take a smooth hermitian metric on $T \widehat{M}$, we solve for the conformal factor.

Theorem[Melrose-Z, 2015]

The fiber metrics of fixed constant curvature on a Lefschetz fibration extend to a continuous Hermitian metric on ${ }^{L} T \widehat{M}$ which is related to a smooth Hermitian metric on this complex line bundle by a log-smooth conformal factor.

Curvature equation on \widehat{M}

Curvature equation for conformal factor: if $g=e^{2 f} g_{0}$, then

$$
R(g) e^{2 f}=\Delta_{g_{0}} f+R\left(g_{0}\right)
$$

which in our case is

$$
\Delta_{g_{p l}} f+R\left(g_{p l}\right)=-e^{2 f}
$$

The linearization of this equation:

$$
\Delta_{g_{p l}} f+R\left(g_{p l}\right)=-1-2 f
$$

Solvability of $\Delta+2$ on \widehat{M}

We solve the linearized equation

$$
(\Delta+2) u=f \in O\left((\mathrm{i} \log t)^{2}\right)
$$

on the space \widehat{M}.

- Two boundary faces: face I is the regular Riemann surface and face II is the one introduced in the last step
- Indicial roots: $\{1,-2\}$ for face I, and $\{-1,2\}$ for face II
- Invertibility of $\Delta+2$ on suitable weighted Sobolev spaces
- Appearance of extra log terms

Log-smoothness of a genuine solution

Solve iteratively to get a formal expansion for the curvature equation

$$
\Delta_{g_{p l}} f+R\left(g_{p l}\right)=-e^{2 f}
$$

where f has the following expansion

$$
f \sim \sum_{k \geq 2}^{\infty} g_{k}
$$

- g_{k} has a factor of $(\operatorname{ilog} t)^{k}$;
- Generally with logarithmic factors.

Then we use a perturbation argument to show the existence of a genuine solution.

Multiple shrinking curves

Now we generalize the Lefschetz fibration to multi-Lefschetz fibration.

- Cusp metric locally near the nodes
- Blow up at every node to get front face $\mathrm{II}_{1}, \ldots, \mathrm{II}_{n}$

Figure: Universal curves undergoing degeneration of two geodesics

Iteration for solving the curvature equation

Figure: Universal curves undergoing degeneration of two geodesics

- Start with curves with cusps
- Solve the linear equation $(\Delta+2) f=O\left(\left(\operatorname{iog} t_{1} \operatorname{ilog} t_{2} \ldots \log t_{n}\right)^{2}\right)$
- Log terms appear in linear growth

Quadratic holomorphic differential: log-cotangent bundle

- The cotangent space of \mathcal{M}_{g} at a regular point consists of holomorphic quadratic differentials
- On the divisor, it contains meromorphic ones with poles at most degree two
- Identified with smooth sections of the log cotangent bundle

This gives us a way to find the complete expansion of Weil-Petersson metric.

Log geometry

- There is a well-defined 'logarithmic' complex tangent ${ }^{L} T^{(1,0)} M$ and cotangent bundle ${ }^{L} \Lambda^{(1,0)} M$
- The spaces of locally holomorphic sections of ${ }^{L} T^{(1,0)} M$ are the holomorphic vector fields which are tangent to all the local divisors.
- In admissible local coordinates ${ }^{L} T^{(1,0)} M$ is locally spanned by the holomorphic vector fields $t \partial_{t}$ and $\partial_{z_{k}}$.
- The complex dual of this bundle, ${ }^{L} \Lambda^{(1,0)} M$, is locally spanned in these coordinates by the $d t / t$ and $d z_{k}$.

Definition

Logarithmic cotangent bundle ${ }^{L} \Lambda^{(1,0)} \overline{\mathcal{M}}_{g, n}$ is defined to be the sheaf of differentials which are logarithmic across the exceptional divisors.

Log cotangent bundle

- We show that ${ }^{L} \Lambda^{(1,0)} \overline{\mathcal{M}}_{g, n}$ is naturally isomorphic to an appropriate bundle of holomorphic quadratic differentials on the fibres (including the singular ones above the divisors) of $\overline{\mathcal{M}}_{g, n+1}$. This extends the proof of Robbin and Salamon.
- Dimension counting: the dimension of moduli space $\mathcal{M}_{g, n}$ is $3 g-3+n$.
- Dimension of cotangent space approaching one component of divisor $\mathcal{M}_{g-1, n+2}: 3(g-1)-3+(n+2)+1=3 g-3+n$, where the extra 1 comes from the residual on the nodal points

Log cotangent bundle

- We show that ${ }^{L} \Lambda^{(1,0)} \overline{\mathcal{M}}_{g, n}$ is naturally isomorphic to an appropriate bundle of holomorphic quadratic differentials on the fibres (including the singular ones above the divisors) of $\overline{\mathcal{M}}_{g, n+1}$. This extends the proof of Robbin and Salamon.
- Dimension counting: the dimension of moduli space $\mathcal{M}_{g, n}$ is $3 g-3+n$.
- Dimension of cotangent space approaching one component of divisor $\mathcal{M}_{g-1, n+2}: 3(g-1)-3+(n+2)+1=3 g-3+n$, where the extra 1 comes from the residual on the nodal points

Main theorem about WP metric on $\overline{\mathcal{M}_{g}}$

A resolution of the complex compactification is given by

$$
\begin{gathered}
\widehat{\mathcal{M}}_{g, n+1} \xrightarrow{\beta} \overline{\mathcal{M}}_{g, n+1} \\
\hat{\phi} \|^{\mid} \\
\hat{\mathcal{M}}_{g, n} \xrightarrow[\beta]{ }{ }^{\mid} \overline{\mathcal{M}}_{g, n}
\end{gathered}
$$

Lifting the log cotangent bundle to this resolution, we use the push forward theorem to show that the Weil-Petersson metric is log-smooth on ${ }^{L} \Lambda^{(1,0)} \widehat{\mathcal{M}}_{g, n+1}$.

$$
G_{W P}\left(\zeta_{1}, \zeta_{2}\right)=\int_{\text {fib }} \frac{\zeta_{1} \overline{\zeta_{2}}}{\mu_{H}}, \zeta_{1}, \zeta_{2} \in Q_{p}\left({ }^{L} \Lambda^{1,0} \widehat{\mathcal{M}}_{g, n+1}\right), p \in \hat{\mathcal{M}}_{g, n}
$$

Application I: Expansion of shortest geodesics

Corollary

The length of the shortest geodesic under degeneration is a polyhomogeneous function of ilog $|t|$.

- In the plumbing model, the shortest geodesic is given by the circle

$$
\left|z_{0}\right|=\sqrt{|t|}
$$

- $I_{p l}(t)=2 \pi^{2} / \log |t|$
- Rotational symmetry of the actual hyperbolic metric (up to infinite order)
- The minimizing curve still occurs in the circle $\left|z_{0}\right|=\sqrt{|t|}$
- $I_{h p}(t)=e^{f\left(\left|z_{0}\right|, t\right)} l_{p l}(t)+O\left(t^{\infty}\right)$

Application II: Takhatajan-Zograf metric

- For a punctured Riemann surface, the first Chern class on the degree k line bundle is related to the WP metric by

$$
c_{1}\left(\bar{\partial}_{k}\right)=\frac{6 k^{2}-6 k+1}{12 \pi^{2}} \omega\left(g_{W P}\right)-\frac{1}{9} \omega\left(g_{T Z}\right)
$$

- Takhatajan-Zograf metric is given by

$$
\left(q_{1}, q_{2}\right)_{T Z}=\int_{\text {fib }} \sum_{i} \frac{E_{i}^{-1} q_{1} \bar{q}_{2}}{\mu_{H}}
$$

where E_{i} is the Eisenstein series at the i-th puncture

- We obtain the expansion of TZ metric and its degenerating behavior.

Thank you for your attention!

